Brain Tumor Detection Using Artificial Neural Networks

نویسندگان

  • Eltaher Mohamed Hussein
  • Dalia Mahmoud Adam Mahmoud
چکیده

In this study a functional models of Artificial Neural Networks (ANNs) is proposed to aid existing diagnosis methods. ANNs are currently a “hot” research area in medicine, particularly in the fields of radiology, cardiology, and oncology. In this paper an attempt was made to make use of ANNs in the medical field. Hence a Computer Aided Diagnosis (CAD) system using ANNs to classify brain tumors was developed in order to detect and classify the presence of brain tumors according to Magnetic Resonance (MR) Image, and then determined which type of ANNs and activation function for ANNs is the best for image recognition. Also the study aimed to introduce a practical application study for brain tumor diagnosis. Neural network must be able to determine the state of the brain according to MR image. In all procedures, image processing and ANNs design, MATLAB was incleded. From each MR Image a Harlick texture features was extracted to prepare training data which was introduced to neural network as input and target vectors. ANNs was designed using MATLAB tool "nntool". Results obtained explain Elman Network, with log sigmoid activation function, surpassing other ANNs with a performance ratio of 88.24%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

Diagnosis of brain tumor using image processing and determination of its type with RVM neural networks

Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...

متن کامل

Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks

Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...

متن کامل

Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...

متن کامل

A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI

Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...

متن کامل

Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013